American Safe Room

ASR-100-12V-NBC Manual 12 volt backup Safe Cell

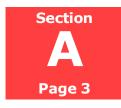
Installation and Operation Manual

Drawing number: TM-ASR-100-12V-NBC Revision G - September 14, 2017

Table of Contents

Contact information A
Description B
Installing the chemical adsorber C
Wall (bulkhead) mounting D
Installation E
Operation F
How the Safe Cell works G
Testing the system H
Changing the filters I
Optional hardware
Component dimensions K
Specifications — general L
Specifications — filters L
Specifications — standards L
Specifications — occupant ratings L

Contact information


Address: American Safe Room

868 Murdock Drive Oakland, OR 97462

Telephone: 541-459-1806 **FAX:** 503-212-6695

E-mail: sales@AmericanSafeRoom.com

Website: www.AmericanSafeRoom.com

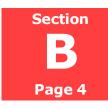
Description

The **ASR-100-12V-NBC** is a portable, positive pressure, emergency air filtration systems designed to offer protection in the event of a Nuclear, Biological, or Chemical event. When properly installed, this system is capable of giving adequate supply of filtered air for up to 12 occupants, according to ASHRAE standard 62* and 17 occupants according to Israeli standards.

*cited in the US Army Corps of Engineers Technical Letter number 1110-3-498 Design of Collective Protection Shelters to Resist Chemical, Biological, and Radiological (CBR) Agents, paragraph C-9b (3).

The system works by drawing outside air through its bank of four filter medias and introducing it into the protected space creating a slight overpressure (positive pressure). This overpressure is designed to deny access to any unfiltered air that would migrate back into the vehicle cabin area through small openings such as cracks.

This overpressure relieves the occupants from wearing gas masks and protective clothing, enabling them a safe and comfortable environment.


What's included:

1-each Safe Cell NBC filtration system
1-each wall mount bracket kit for the Safe Cell

1-each DC power cord with clip leads for a battery 1-each AC power supply with 120VAC plug

1-each 60-inch air intake hose 1-each wall mount flange for the hose

1-each manual binder with all the relevant manuals 4-each cap plugs to seal the filter while not in use

Installing the chemical adsorber

Your Safe Cell NBC filter/ventilation unit is shipped separate from the chemical adsorber.

To install the chemical adsorber, remove the two shipping bolts/nuts and the top end bell as shown in figure B-1.

CAUTION

The face of the HEPA cell is now exposed and the media (pleats) are easily damaged.

Place the chemical adsorber carefully and squarely over the HEPA face shown in figure B-2. Ensure that the rubber seal surfaces of the filter gaskets are squarely mated as shown in figure B-3.

Set the top and bell over the stacked filter assembly taking care that the upper seal of the chemical adsorber is squarely seated inside the top end bell inner seal surface.

Sandwich the filter assembly with the two aluminum side plates and insert the 8 clamping bolts and nuts as shown in figure B-4.

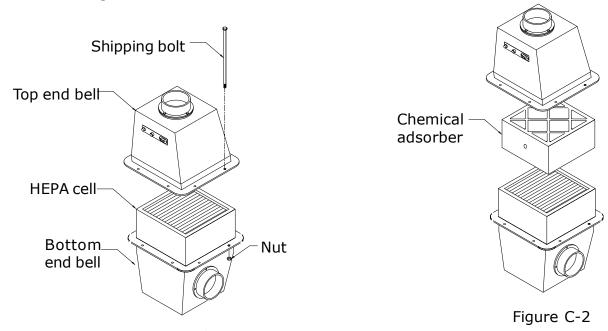


Figure C-1

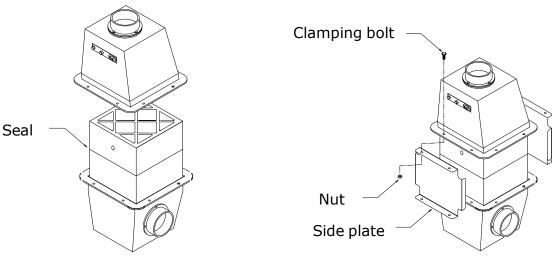
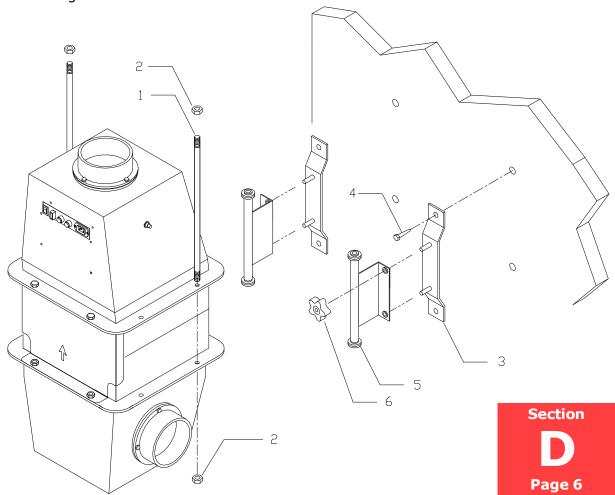


Figure C-3 Figure C-4


Section
C
Page 5

Wall mounting

The mounting location should be near an electrical outlet and within reach of the air inlet (the wall mount flange or the intake blast valve). If the air intake hose will not reach the bottom air intake port on the Safe Cell, 4 inch, schedule 40 ABS pipe and fittings should be used to connect the hose to the air inlet. The air intake hose will slip fit onto a 4 inch pipe with an outer diameter of $4\frac{1}{2}$ inches.

The Safe Cell needs to be mounted in a vertical position as shown below, unless a special carbon adsorber is supplied that has internal baffles to mitigate the possibility of blowby if the carbon settles. For ease of manual hand crank operation mount the Safe Cell to the wall with the bottom sitting on the floor. The complete mounting system is first assembled on the Safe Cell so that the fastener holes can be located on the wall. One end detail is shown below, the other end mounting arrangement is identical:

- 1. Assemble the clamp bars (item 5, below) to the Safe Cell by inserting them between the top and bottom end bell flanges and sliding the threaded rod (item 1, below) through the tubes and threading on the flange nuts (item 2, below).
- 2. Assemble the wall mount brackets (item 3, below) to the clamp bars (item 5, below) and tighten down the star nuts (item 6 below) .
- 3. Put the Safe Cell in place on the floor with the wall mount brackets up against the wall.
- 4. Locat and mark the center of the hole locations for the wedge anchors (item 4, below).
- 5. Remove the Safe Cell. Drill the holes and install the wedge anchors. See page 19 for wedge anchor instructions.
- 6. Remove the wall mount brackets from the clamp bars and assemble them onto the wedge anchors and tighten the nuts.
- 7. Assemble the Safe Cell to the wall mount brakets and tighten the star nuts.

Installation

Mount the wall flange over the air intake hole in the vehicle side wall.

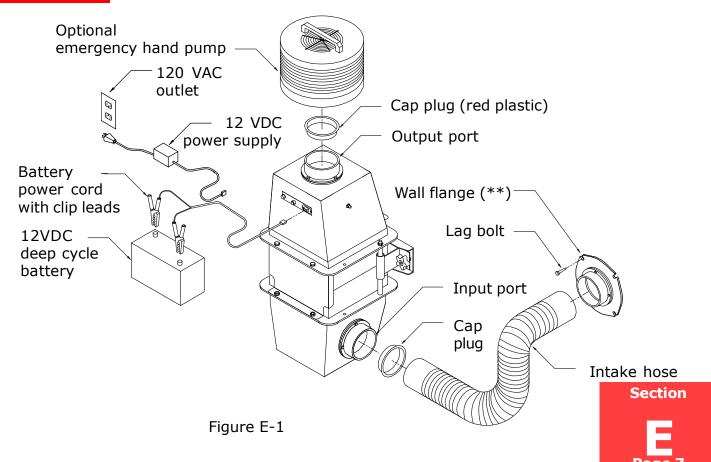
Remove the cap plugs from the intake and output ports.

Install the intake hose — a slight twisting motion may help to seat it onto the intake port.

The hose couplings and hand pump are held in place by a shallow locking taper. Only a slight force is needed to secure a tight connection, do not over tighten. If a more secure connection is necessary, use an ABS adhesive to permanently connect the hose to the hose coupling.

In order to keep the filters fresh it is recommended to leave the red intake and output port shipping caps installed in the Safe Cell until use. This will keep the carbon from adsorbing moisture from the air and becoming damp — which will degrade its performance.

Electrical connection


Connect the 12 volt power supply connector to the control panel socket and plug into a 120 volt AC wall outlet, or ...

Connect the 12 volt DC cable connector to the control panel socket and connect the clip leads (jumper cable style clips) to a 12 volt DC deep cycle battery.

For permanent installations consult with an electrician.

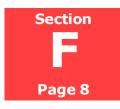
Ensure that the positive clip lead (+) is to the positive post of the battery (+).

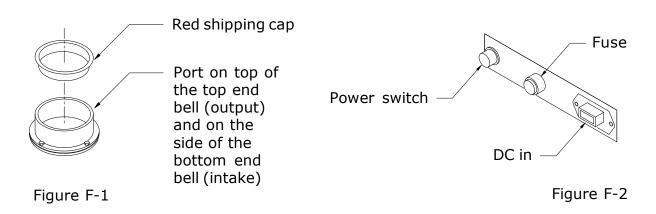
Operation — using the Safe Cell

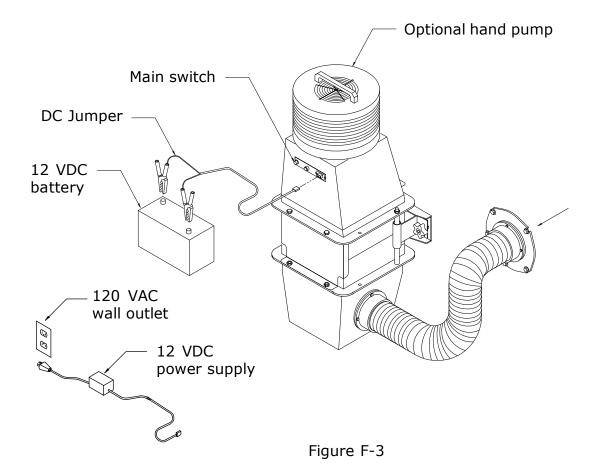
The Safe Cell is an emergency air filtration device. The granular carbon in the carbon adsorber will adsorb most any gas present in the atmosphere - including water vapor. To prevent this from happening, the red shipping caps should be left on the Safe Cell when not in use.

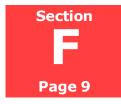
Do not install the optional hand pump until it is needed. When the filter is operating under AC or DC power, the hand pump should be stored nearby, but not installed on the top of the Safe Cell.

You can perminently install the optional hand crank on the top of the Safe Cell. Disconnect the hand crank hose and keep the red shipping cap on the top outflow port of the Safe Cell for storage.


Switch the push-button power switch on the control panel to the "on" position.


Never allow the battery clip leads (clamps) to touch one another or anything that will conduct electricity between them at the same time Allowing the battery jumper clip leads to cross while connected to the control panel battery socket will burn out the fuse in the Safe Cell control panel.




Lead/acid batteries release hydrogen gas when they are being charged Use only sealed batteries inside of sealed rooms

Operation — illustrations

How the Safe Cell works

The filter/ventilation unit intakes unfiltered air and pumps it into the protected space through the filter bank air causing a slight differential overpressure in the protected space relative to the outside unprotected space.

This overpressure in the protected space dictates that all air leaks are outward, disallowing contaminated air or toxins to bypass the filter/ventilation unit and migrate into the protected space.

We recommend that the protected space have a minimum overpressure of .02 inches of water column and a maximum not exceeding .06 inches of water column.

The following text regarding overpressure is taken from the U.S. Army Corps of Engineers document Design of Collective Protection Shelters to Resist Chemical, Biological and Radiological (CBR) Agents, # ETL 1110-3-498.

Definitions:

Toxic free area (TFA) same as meaning as Protected space or Safe Room.

Chemical, Biological and Radiological (CBR) same meaning as Nuclear, Biological and Nuclear (NBC).

D-5. Toxic-Free Area Overpressure.

For existing facilities being modified or new facilities being designed with a Class II CP system, the air intakes will be protected with a CBR filtration system.

The TFA will be designed for a minimum overpressure goal of 5 Pa (0.02 inches water column).

This overpressure corresponds to a wind speed impact pressure normal to a wall of 12 km/hr (7 mph).

This wind speed condition is most favorable for directing a plume of agent with minimum dispersion toward an outside air intake.

We also manufacture calibrated equipment and kits to accurately measure the differential pressures between the toxic free area and unprotected space. Please see Section I of this manual for information about this kit.

Testing the system

General discussion

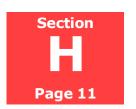
The Safe Cell is only one component of a space protected from airborne pathogens. Others include proper sealing of the space and the release of overpressure in a metered amount. Your protected space should be envisioned as a pressurized vessel with a calibrated release valve. The overpressure ensures that all air enters only through the filtration system and the output ensures that you have true ventilation that introduces oxygen that the occupants need to inhale and removes the carbon dioxide that the occupants exhale. If you have a well sealed protected space, we recommend that you install one of our overpressure relief valves to meter the outflow of air in a known, calibrated quantity. See Section J for more information about the overpressure relief valve.

Test number one: the negative pressure test

The purpose of this test is to insure that all unprotected rooms and space that surround the protected space are in fact at a lower air pressure than the actual protected space.

To conduct this test simply place **in a safe manner** lighted **scent** punks in the surrounding unprotected rooms for a period of 5 to 10 minutes while the Safe Cell is in operation. No scent should be detected in the protected space.

Test number two: the positive pressure test

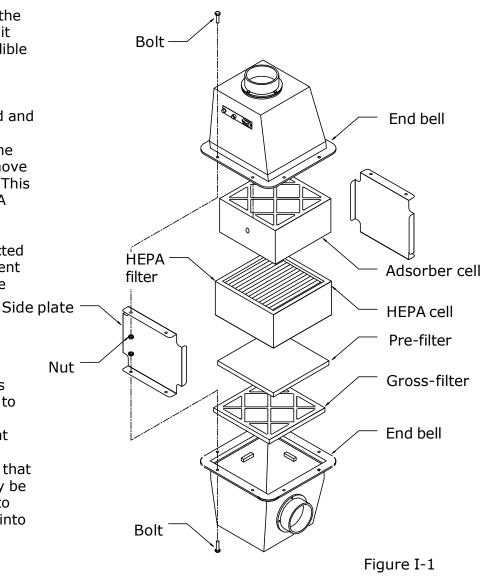

The purpose of this test is to insure that all of the air in the room is escaping outwards through the cracks around the doors and windows.

To conduct this test, shadow the cracks around the doors and windows with a lighted smoke punk and observe the direction of the smoke draw:

Smoke drawn outward through a crack indicates the venting of positive pressured air from the protected space. This condition is allowable and indicates that the system is working properly.

Smoke rising off the smoke punk and is neither drawn out through the crack or blown back into the protected space. This condition is allowable and indicates that the crack is sealed.

Smoke blows back into the protected space the crack. This condition is unallowable and indicates insufficient overpressure in the protected space. This indicates that the system is **improperly installed or that the room requires additional sealing**.

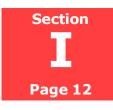

Changing the filters

Do not ever attempt to change the filters **during** an NBC event. Wait until it is over and you have credible indications that the outside atmosphere is safe to breath.

Once the event has been cleared and confirmed that it was **nuclear**, **biological**, or **chemical**, all of the filters should be changed to remove the toxins trapped inside them. This includes the pre-filters, the HEPA filter, and the carbon adsorber.

Filters that are known or suspected of being used during an NBC event are considered hazardous waste and should be disposed of appropriately.

This disposal should be done in accordance with all laws and regulations governing hazardous waste disposal. Do not attempt to bury or incinerate used filters. Groundwater leachate (liquid that contains toxic chemicals) is very hazardous and smoke or fumes that are given off during burning may be hazardous if allowed to come into contact with the skin or inhaled into the lungs.


The Safe Cell NBC filter employs a compression seal clamping mechanism to insure an even compression force of 20-PSI on the face of the filter seals.

To change the filters:

- 1. Install the red shipping caps on all of the ports, then turn off the Safe Cell.
- 2. Remove the Safe Cell from the wall mount bracket by removing the star nuts.
- 3. Take the complete Safe Cell outside the shelter and away from people and buildings.
- 4. Remove the 8 clamping bolts and nuts on the side plates
- 5. Remove the 2 side plates
- 6. Remove the top end bell
- 7. Remove all of the filter elements
- 8. Wipe clean and inspect the end bell interiors and the sealing surfaces on them

To install new filters repeat steps 5 through 7 above in reverse order.

Replacement filters should be obtained from American Safe Room. Alternate sourcing of filters is not recommended and relieves American Safe Room from liability resulting from inadequate performance by third-party filters.

Optional hardware

Connection kits

We manufacture the most commonly needed connection kits for connecting your Safe Cell to an external air supply. These kits may also be used where an air exhaust port is required for sealed rooms or bunkers that employ the overpressure relief valve.

All of the connection kits accept the quick connect hose coupling of the filter/ventilation unit or the mounting of the overpressure relief valve when an exhaust is required.

Backup hand operated air pumps

The ASR-100-AV-NBC Safe Cell is equipped with an internal automatic switching power supply. This system automatically switches the Safe Cell to the user supplied 12 volt automotive battery in case of failure of the main AC power. A fully charged 125 amp hour deep cycle battery will operate the Safe Cell for 16 to 24 hours before it needs to be recharged.

For your added safety in case of a long term electrical power failure we manufacture the two emergency backup hand operated air pumps - a bellows type pump and a hand crank pump.

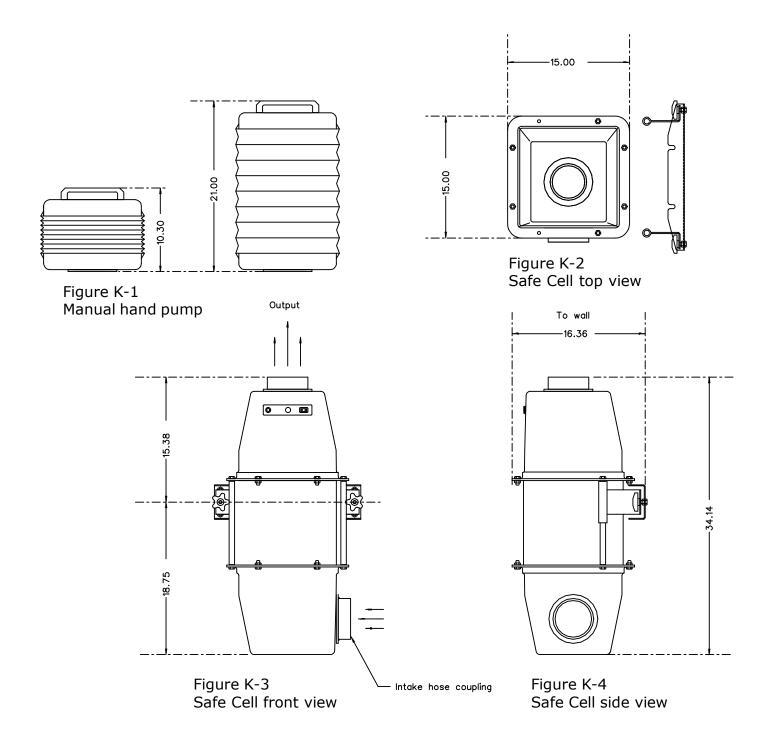
Overpressure valve

Used when the Safe Cell is installed into a location that provides no other means for expelling the carbon dioxide (Co²) and moisture that occupants exhale. It meters the air out in a controlled quantity to maintain overpressure and provide true ventilation (air in/air out). The part numbers for the overpressure valves is ASR-50-OP (preset airflow) and ASR-100-AOP (adjustable airflow).

These well sealed protected spaces usually include concrete safe rooms, underground bunkers or steel enclosures. Most residential and commercial homes and buildings are not sealed up enough to warrant an overpressure valve - but this needs to be determined by testing the protected space after the installation of the Safe Cell. If you have a protected space that is not properly sealed, taking additional measures to seal it up and installing an overpressure relief valve is the best way to ensure your safety—air should have one way in (through the filters in the Safe Cell) and one way out (metered through the overpressure relief valve).

Blast valve

The automatic two way explosion resistant blast valves offers external blast protection up 101 PSI. They are designed to be used in hardened shelters. This rating is for both pressure and vacuum. Part number: ASR-101-BV


Differential pressure gauge

Provides an accurate display of the difference in air pressure between your protected space and the outside air in real time.

Part number: ASR-05-DPG.

Component dimensions

Specifications — general

ASR-100-12V-NBC Safe Cell

Envelope size: 15 inches (380 mm) square x 35 inches high (867 mm)

Weight: 49 pounds (22 kg) with all of the filters installed

Blower output: 250 cubic feet per minute (7 cubic meters per minute) System output: 60 cubic feet per minute (100 cubic meters per hour)

Noise level: 60 DB - A scale Voltage: 12 volt DC

Current draw: 4.4 amp at 12 volt DC

Fuse: 6-amp

Power cord: Battery jumper type clip leads

Flexible hose: 127-mm/5-inch diameter. 1.5-meter/60-inch long

Specifications — filters

Filters:

Two piece pre-filter: Protects HEPA against larger airborne particles.

The first part is a rigid polymer matrix of Polyester.

Second part spun fiberglass pad.

HEPA aerosol filter: Protects personal against poisonous aerosols

and biological warfare agents.

CERTIFIED TO MEET OR EXCEED MIL F 51079-1998

The nuclear grade media furnished in these filters is certified to meet the requirements of the: Israeli Ministry of Defense and the U.S. Army.

MIL-F-51079D as required in the US Army document for:

Design Of Collective Protection Shelters To Resist Chemical, Biological and Radiological (CBR) Agents, Us Army Corps of Engineers ELT 1110-3-498 24 Feb. 1999.

EN 1822-1-1998 High efficiency air filters: Classification,

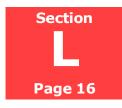
Performance testing and marking.

Media: Water repellant glass micro fiber 99.97% true HEPA type (A).

Cell Side Material: Fire retardant particleboard

Separators: Aluminum

Bond: Polyurethane foam **Gasket Material:** Neoprene (RE43E1)


Gasket Location: Both sides

Factory Test: Certified 99.97% (DOP)

UL 866 Label: Required

HEPA filter cell: As developed by the Atomic Energy Commission and used in nuclear power stations, hospitals and bio-containment laboratories.

Guaranteed Performance: Each HEPA filter is individually tested before it leaves the factory, your assurance that it meets rated efficiency. The penetration and actual airflow rate are indicated on the label. Each filter is also assigned a serial number.

Specifications — **standards**

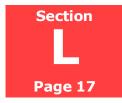
DOP Test: This has been the industry standard test method for many years. It is conducted using a forward light scattering photometer. The HEPA is challenged with 0.3 micrometer particles of dioctylphthalate (DOP). By measuring the upstream and downstream concentration of these particles, the HEPA filter cell efficiency can be calculated.

Underwriters Laboratories Classification UL 586: This classification to insure that each HEPA filter cell is individually tested at the factory. Additionally, representative HEPA filter cells are tested by UL to ensure that they provide their rated HEPA level filtration, after being subjected to the following conditions of a high moisture environment of (90% R.H.), a high temperature environment of (371 degrees Celsius), low temperature environment of (-3 deg/C). UL also subjects the HEPA filter cell to a spot flame test of 954 degrees Fahrenheit.

Activated carbon filter for protection against war gases:

The nuclear grade war gas adsorber is a block sieve filter cell consisting of two containment medias and a block of nuclear grade war gas carbon.

It is effective in the removal of the following war gases:


Hydrogen cyanide Phosgene Mustard gas Sarin Ricin VX

NUK-TK Nuclear Grade Carbon Specifications

Cell size: 304-mm/12-inch sq x 152-mm/6-inch deep.

Carbon, activated impregnated TEDA copper-zinc-molylebeunm-triethylenemelamine

1. ASTM D 2854-1996 Standard test method for apparent density of activated carbon Standard test method for moisture in activated carbon 2. ASTM D 2867-1999 3. ASTM D 3802-1997 Standard test method for ball-pan hardness of activated carbon 4. ASTM D 3467 Activity for CCL: 60% minimum 5. ASTM D 2862/D5158 Particle size: 4 x 8 Mesh U.S. 6. ASTM D 3838 pH aqueous extract: 9.2 minimum 7. ASTM D 3466 Ignition temperature 330 Celsius Radioactive iodine removal 8. ASTM D 3803 9. Impregnate 2.1 Potassium iodide, 3.1% TEDA

Specifications — occupant ratings

The ASR-100-12V-NBC and ASR-100-24V-NBC will produce 100 cubic meters per hour (60 cubic feet per minute) of filtered air. This is sufficient for 12 adults. This 5.0 CFM per occupant is based on the first ASHRAE standard that is excerpted below. The Israeli standard of 3.5 CFM per occupant is also useful in determining the absolute upper end of your shelter occupant capacity.

In order to insure sufficient airflow rate and overpressure state in a particular installation the guidelines specified in the installation manual must be followed.

Some installations require larger unit sizing based on the size and construction type of the room rather than the number of occupants. Please do not hesitate to contact our technical support department with any questions. We highly recommend adherence to local building codes.

ASHRAE Handbook 1985 Fundamentals Volume

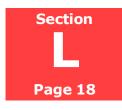
Section IV Load and Energy Calculations

Chapter 22 Ventilation and Infiltration

(TC 4.3, Ventilation Requirements and Infiltration)

Page 22.1 Minimum Outdoor Air Supply Rates:

ASHARE Ventilation Standard 62-1981,1 defines minimum outdoor air supply rates for various types of occupancy. These rates have been arrived at through a consensus of experts working in the field. As shown in Eq. (2), a minimum rate of 5 cubic feet minute per person for sedentary activity and normal diet holds the Co² level in a space 0.25% under steady state conditions.


While normal healthy people tolerate 0.5% Co² without undesirable symptoms and nuclear submarines sometimes operate with 1% Co² in the atmosphere, a level of 0.25% provides a safety factor for increased activity, unusual occupancy load or reduced ventilation.

ASHRAE HANDBOOK 1982 APPLICATIONS

Environmental Control for Survival 11.1-11.24

Page 11.4 Vitiation Factors:

Carbon dioxide concentration should not exceed 3% by volume and preferably should be maintained below 0.5%. For a sedentary man, 3 cfm (1.4 l/s) per person of fresh air will maintain a Co^2 concentration of 0.5%.

